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Long’s self-similar vortex is known to have two solutions for each supercritical value 
of the flow force. Each of those solutions is shown here to have a double structure if 
the flow force is large. We then investigate the inertial instabilities of one of those 
large-flow-force limit solutions, and find them to be related to the instabilities of the 
Bickley jet in one rQgime. However, the swirl in the vortex becomes important for long 
waves, very strongly modifying the sinuous and varicose Bickley modes. We find 
in particular that the asymptotic results obtained agree well with our numerical 
solutions for the sinuous mode, but not for the varicose mode, the difficulty in the 
latter case being apparently due to mode jumping. The asymptotics show a varicose 
long-wave neutral mode for positive azimuthal wavenumber, and two such modes for 
negative wavenumbers. The upper neutral sinuous mode occurs at much larger 
wavenumber than in the Bickley case, and its structure is also presented. The study 
overall is aimed a t  providing a basis for the investigation of strongly nonlinear 
effects. 

1. Introduction 
Vortex breakdown, multiple vortex structures and other intriguing phenomena 

are common to the motion of atmospheric vortices as well as in leading-edge, wing- 
tip, and other vortices in airfoil flight, and also in pipe flows and other confined 
swirling flows. Many studies of such phenomena have been presented, among them 
Howard & Gupta (1962), Pedley (1968, 1969), Lessen & Singh (1973), Lessen, 
Desphande & Hadji-Ohanes (1973), Lessen, Singh & Paillet (1974) and Burggraf & 
Foster (1977b). In the atmospheric setting, both Snow (1978) and Staley & Gall 
( 1979) have attempted to model instabilities in tornado vortices. 

Most of the studies, including Staley & Gall (1979), Snow (1978), and Lessen et al. 
(1973), have dealt with broken-line profiles, or even vortices without any axial shear 
whatever. Exceptions are Lessen et al. (1974), and a series of papers by Stewartson 
(1982), Maslowe & Stewartson (1982), Leibovich & Stewartson (1983), Stewartson & 
Capell (1985), Duck (1986), and Stewartson & Leibovich (1987). Also, Duck & Foster 
(1980) and Foster & Duck (1982) explore instabilities of full three-dimensional 
vortices. 

The sequence of papers above, beginning with Stewartson (1982), utilizes 
asymptotic methods to explore the instability of certain profiles for large azimuthal 
wavenumber. Leibovich & Stewartson (1983) and independently Duck (1986) found 
thereby a hitherto-unknown sufficient condition for instability of such swirling flows. 
These investigators focused on the Batchelor (1964) trailing-vortex solution, 
although there turns out to be much generality in the analysis. 
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The motivation for the present work comes from the fact that most previous 
theories have been for linear disturbances whereas the most significant of vortex 
phenomena, including vortex breakdown, would seem rather to be strongly nonlinear 
processes. There have been few if any fully nonlinear analysis attempted or reported 
in the literature, however, and so the current study is undertaken deliberately with 
a view to its extension subsequently to  the fully nonlinear regime. That enlargement 
into the fully nonlinear regime, i.e. where the mean-flow profile is completely altered 
from its original state, appears to be more readily achievble from the basis 
established in this work owing to  its interactive flow-structural nature, an aspect 
discussed later in the paper. Here, therefore, we extend analytically, to large values 
of flow force, the work of Foster & Duck (1982) on the instability modes of the self- 
similar vortex family due to  Long (1961) in which the swirl and axial velocity 
variations with radius are suggestive of what one might find in a tornado vortex :t 
cf. Hoecker (1960) and Burggraf & Foster (1977 b )  for more discussion of this point. 
The vortex, then, is an exact solution of the Navier-Stokes equations a t  large values 
of the effective Reynolds number, r/v, where T i s  the vortex circulation and u is the 
kinematic viscosity of the fluid. Although the details of the solution are summarized 
in $ 3  below, we note a t  this point that the swirl and axial velocity components are 
functions of the conical variable rr/22/21tuz, with ( r , ~ )  being the radial and axial 
coordinates. These vortex solutions may be characterized by the value of the ‘flow 
force ’, 

(p-pm+&w2)rdr, 

which represents in effect the relative strength of the axial flow in the vortex. Two 
solutions exist for each value of M exceeding M, = 3.75 and none for M < M,, as 
indicated by figure 1. Figure 2 shows both sets of axial velocity and swirl velocity 
profiles for this vortex for a value of M of 4.00. All of the vortices of this family are 
unstable to small disturbances for sufficiently large negative values of the azimuthal 
wavenumber, n, of the disturbance, by application of the Leibovich-Stewartson 
criterion. Foster & Duck (1982) found unstable modes numerically for negative but 
finite n, but were unable to  compute any modes for positive n, a feature also true for 
the Batchelor vortex, as noted in Duck & Foster (1980) : see later comments in this 
section. 

I n  this paper we describe first the asymptotic basic-flow profiles a t  large values of 
the flow force M for both Type I and Type I1 profiles ($ 3), and then study, in 304 and 
5 ,  the two families (‘ sinuous ’ and ‘varicose ’ as defined subsequently) of instability 
modes that arise for finite In1 for the Type I1 vortex. Comparisons with computational 
results are also presented. 

We find that the basic Type I1 vortex a t  large M consists of a large cylinder of 
radius M containing fluid that is slowly flowing downward and has virtually no 
azimuthal motion. At the radius M the swirl rises rapidly to  that for a potential 
vortex over a relatively narrow O( 1) zone in which there is an intense upward ring jet 
(with a sech2 profile). Exterior to this radius, the azimuthal motion is that of a 
potential vortex, and the axial motion is weak, decaying a t  large radius. It is not 
surprising, then, that for axial wavelengths of the order of this jet width the stability 

t There is good evidence that there is an off-axis velocity peak in waterspouts, which are 
dynamically nearly identical to tornadoes (see Church & Ehresman 1971, and Golden 1973). The 
Type I1 Long’s vortex profile examined in this paper has exactly that form! So, in fact, the profile 
chosen here is sensible in the light of these observations. 
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FIGURE 1. The vertical velocity on the axis for Long’s vortex vus. flow force, M ,  showing the Type 
I and Type I1 families. The results are established in Foster & Duck (1982). All vortices below 
M = 4.71 (0) are of defect type, i.e. the axial velocity maximum is off-axis. 

character of the flow is essentially that of the Bickley jet (Drazin & Reid 1981) and 
is almost two-dimensional. However, as the waves become longer, the first distinctive 
length being of orderM, the double structure of the basic vortex becomes important, 
as does the azimuthal convection of the velocity perturbations, so that the angular 
momentum in the vortex comes into play. This changes the instability modes away 
from the sinuous and varicose two-dimensional Bickley modes into three-dimensional 
ones, which are governed by an interactive structure in the sense that the ring-jet- 
region’s influence is counterbalanced by that of the weaker vortex flow outside the 
ring jet. 

We find further that for M large there is no computational or analytic barrier to 
obtaining unstable modes for n negative or for n positive in the present flow, whereas 
Duck (1986) by contrast found no evidence for modes a t  large positive n in the case 
of the Batchelor vortex : see also our earlier comments. The present evidence suggests 
that, beyond some positive value of M ,  positive-n modes do arise. A similar 
conclusion applies to the other, Type I, vortex flow since it approaches the Squire- 
jet form for M large, thus yielding instabilities for n =  + 1 as well as for n = - 1, 

Further comments, including mention of the nonlinear regime, are presented in 56. 
Finally, although the Bickely-jet instabilities exist up to a finite wavenumber, the 

cut-off wavenumber in the case of our vortex is substantially different owing to the 
swirl effects The analysis leading to that cut-off value for the sinuous mode is 
presented in the Appendix. 

To be complete, it  should be noted that an actual tornado has complexities not 
incorporated in the analysis of this paper. Certainly, the connections of the tornado 
vortex to the ‘collar cloud ’ above i t  and in general to the parent thunderstorm are 
important, particularly with regard to  initiation of the tornado. However, it may be 
that, once the tornado vortex is formed, many of the complexities of the 
thunderstorm environment, like release of latent heat for example, are less important 



408 

1.0 , , , , , , , , , , , , , 

g 

M .  R.  Foster and F. T .  Smith 

I 

Y 

Y 

FIGURE 2. Dimensionless axial velocity and angular momentum computed for Long’s vortex, 
Types I and 11, for M = 4.0. 

to the ongoing dynamics in the vortex itself than factors like hydrodynamic 
instability, turbulence, vortex breakdown, and other phenomena described by an 
homogeneous, incompressible model. On the other hand, density stratification in the 
ambient - and consequent buoyancy force - is likely to  be significant to  a very tall 
‘fully developed’ vortex, say beneath a high cloud base. Pressure variations cause 
negligible density variations, however, since even the most generous estimates of 
velocities in tornadoes would put the square of the Mach number a t  a. Further, 
tornado morphology is varied ; many - apparently including some of the most 
damaging - are rather short and wide, whereas the vortex studied here is long and 
slender. So, with such caveats in mind, we proceeed. 

2. The governing equations 

by writing 
As in Foster & Duck (1982)’ we investigate the inviscid stability of Long’s vortex 

( 2 . l a )  u = uo(,.) + a(,.) eik(z-ct)+inO 

p = po(,.) +@(,.) eik(z-ct)+ine > (2.1b) 
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and substituting into the Euler equations. Here u0 is the basic flow which is described 
further in the next section and ii is the small perturbation. In the usual way, we 
neglect all but the linear terms controlling ii and, also consistent with the 'parallel- 
flow approximation ', the z-dependence of the basic flow, uo, can be ignored to leading 
order. (The latter st)ep can be justified a posterioroi for the solutions that are found 
subsequently: see also the end of this section.) Under these assumptions, the 
resulting equations reduce t o  the following pair governing P(y), @(y), where we 
hereafter omit the tildas : 

qj = k(w, -c)+ , ,  ngo 
Y 

(2 .2a )  

(2.2b) 

(2 .2c)  

with u being the radial velocity perturbation and p the pressure, and the prime 
denotes differentiation with respect to y, a non-dimensional radial variable, r / L .  go  
and wo are respectively dimensionless angular momentum and axial velocity of the 
basic vortex, made dimensionless with K = r/2x and KIL respectively. These 
equations, as such, apply of course to any vortex under a parallel-flow assumption. 
In our case we consider Long's conical self-similar vortex, discussed briefly in $ 1 and 
described in detail in $ 3 .  If zo is the distance to the virtual origin of the cone, then 
L must be 2 /2vzo /K  (see $ 3 ) .  The boundary conditions on (u,p)  are 

( 2 . 3 ~ )  

(2 .3b)  

a t  the vortex centre, and the disturbances must decay for y+co. Burggraf & Foster 
( 1 9 7 7 ~ )  noted that the appropriate condition to use a t  the vortex edge, in order to 
suppress the growing solution for y +co in the computations, is p + icu = 0. (There is 
some discussion of the rationale for this choice in $6.) In  the analysis presented here 
we are able to  use simply 

p+O,  u + O  for y-foo, (2 .4 )  

It is these equations, (2 .2) - (2 .4) ,  that we propose to solve to determine the complex 
wave speed c = cR + ic, for real wavenumber k (and azimuthal integers n) and hence 
obtain the instability properties for the vortex in question here. Analytical 
properties are discussed in QQ4 and 5 and are compared there and in $6 with 
computational results. 

The neglect of the viscous terms in the formulation means that the wavelengths 
cannot be too short (specifically, k ,  n 4 ( r / v ) i ) ;  the parallel-flow condition assumed 
above also restricts the results. The local 'thickness' of the vortex is based on the 
distance zo from the cone apex, and is proportional to vzo/I' .  A term like aw0/az may 
then be neglected in (2 .2 )  only if kz, % 1.  Since in this work k is assumed as small as 

in one case (see 94), the following restrictions, 

In\ + (r/v)+, M 4 z;4, 
then hold for the analysis. 

(2 .5)  
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3. The asymptotic vortex solutions 
The basic flow itself is addressed now. The self-similar vortex solution found by 

Long (1961) has a stream function f, circulation and pressure that satisfy the 
following ordinary differential equations : 

yy-(l-f)f’-4y% = 0, 

yg”- (1 -f) g/ = 0, 

2y3s/+g2 = 0. 

Here s is the pressure and the axial and swirl velocities are given by 

w=--. K2fl(Y) 
2vz y (3.4) 

where we recall that K denotes r /2x ,  with r being the circulation at  the vortex edge, 
while ( r ,  z )  are radial and axial coordinates, v is the kinematic viscosity of the fluid 
and y is the similarity variable Kr/.\/2vz. The boundary conditions are 

Long characterized the solutions to (3.1)-(3.7) in terms of a ‘flow force’, whose non- 
dimensional definition is, noting (l . l) ,  

and he observed that there are two solutions to the above family of nonlinear 
equations for M exceeding a critical value of M ,  = 3.65. (Actually, the critical value 
has been shown to be 3.75in more accurate calculations by Burggraf & Foster 1977b.) 
Poster and Duck (1982) denoted these vortices as ‘Type I ’ and ‘Type I1 ’ based on 
the values of the axial velocity on the axis : see figure 1. Typical Type I and Type I1 
profiles for axial and azimuthal velocity components are shown in figure 2, for 
M = 4. We present in this section asymptotic solutions to (3.1)-(3.7) for large M ,  for 
both Type I and Type 11 vortices. 

3.1. Type I vortex 

The most substantial part of the axial motion in this case is a jet confined to a thin 
region around the axis y = 0, with relative error O(M-’). Thus we write y = M-i 7 and 
expand f ,  g, s as 

(3.9) :I f = F,(q) +M-l F,(q) + . . . 
g = G,(7)+M-’Gl(7)+ ... 

s =Mx,(.zI)+s,(q)+ ... , 

in which case the flow-force integral (3.8) reduces, to leading order, to 

(3.10) 
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Substitution of (3.9) into (3.1)-(3.3) then leads to the nonlinear governing equations 

I @‘;-(l-F,)Fk = 0, 

7G,”-(1-Fo)Gh = 0, 

2q3 S; + G2 = 0, 
whose solution is given by 

(3.11) 

(3.12) 

and the quantity k2 is found from (3.10) to be An. The solution (3.12) is exactly that 
for the round jet found by Squire (1951). 

Construction of the solution for the next-order terms in the series (3.9) is 
technically difficult, and, without details, let it  suace to say that, for 11 -too, Fl - k2 
whereas F, -+ 4, and so the asymptotic expansion (3.9) is not uniformly valid for large 
7. We consider this feature next. 

To examine the wider-scale structure, we write 

f= f(y), 9 = 1 +M-lg(y), s = (h2) +M-’sly), 

with y now of O(1) as guided by (3.9), and then (3.1)-(3.3) reduce to the nonlinear 
form 

yF-(l-f))a = y, ( 3 . 1 3 ~ )  

y p - ( l - f i f  = 0, (3.13b) 

d-q/yS = 0. ( 3 . 1 3 ~ )  

A single integral of ( 3 . 1 3 ~ )  leads, however, to a Riccati equation whose solution is 

( 3 . 1 4 ~ )  

where I ,  and I, are modified Bessel functions of the first kind (Abramowitz & Stegun 
1965). The solutionfcan be shown to match to F, as y+O and to satisfy the edge 
(y+co) boundary conditions, as required. In addition, matching Q to G, the swirl 
is given by 

(3.14b) 

from (3.13b). That completes the large-M structure of the Type I vortex. 

3.2. Type II vortex 
The previous numerical computations for this second vortex show the entire vortex 
growing in width, as measured by the position of the axial velocity peak, with 
increasing M .  Hence, addressing the large-M behaviour, we write 

f = yaw), 9 = W),  s = y ; 2 w ) ,  

where Y = y/yo is of order unity at  first and yo is the parameter to be determined 
below that grows with increasing M .  Substitution into (3.1)-(3.3) therefore gives the 

14 FLM 2uB 
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leading-order terms in the associated asymptotic expansion satisfying the nonlinear 
system 

I 2P-+G; m0 =O, 
dY 

dG 
dY 

Fo-----J! = 0, (3.15) 

F0--4y3S0 U O  = 0. 
dY 

The required solutions here are found to be discontinuous across Y = 1 ; specifically 
the solutions are 

G o = O ,  F , = & P / 1 / 2 ,  S o = $  in Y <  1 (3.16) 

and Go = 1, F,  = (P-a2)k, So = 1 / (4P)  in Y > 1, (3.17) 

where a is to be determined and the sign of the F, solution, (3.16), is not yet known 
either. Consequently a buffer layer or inner solution is induced near the cylindrical 
face Y = 1. 

The inner solution is obtained by writing y = y o + f , f  = yo F ( E ) ,  and g = S(f) .  The 
result of this to leading order is the set of equations, 

9”+99’ = 0, ( 3 . 1 8 ~ )  

y” + .FY = 0, (3.18b) 

obtained from (3.1) and (3.2). Any solution of (3.18 a) that will match to (3.16), (3.17) 
is easily seen to have the property that 9 --f c for 6 + co and 9 + - c for 6 -+ - co for 
some constant, c .  That result then resolves the ambiguity in the earlier-noted solution 
for Fo in the outer flow, so that we have now 

- P / d 2 ,  Y < 1, 

Fb ={(P-t)’, Y > 1. 

The inner solutions, when completed and matched with (3.16) and (3.17), are 

9 = ( 1 / d 2 )  tanh ( fJ ,  
S(6) = 6[1+ tanh (to)]. 

(3.19) 

(3.20) 

Here, for convenience in what comes later, we use 5, defined by 

50 = i ( 1 + 5 / d 2 ) .  (3.21) 

The location of the zero of f o  in the solution comes about from the precise matching 
of the leading-order pressure. Further, the parameter yo, introduced above, is readily 
found by substituting (3.20) into the flow-force definition (3.8) and is given by 

Yo = (32 /2 /7w.  

So, in summary, the axial velocity in this Type I1 vortex has a very small down- 
ward drift inside the cylinder y = y,,, and a relatively high-speed jet-like region in the 
vicinity of y = yo, given by 

(3.22) W = 9 ’ 1 4 2  = -sech2(f0) 

which is precisely the Bickley-jet solution. Across this same region, the swirl velocity 
rapidly adjusts from zero to the potential vortex solution. Outside of y = yo the basic 

1 
4 4 2  
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flow consists of much weaker axial velocity which decays algebraically. Figure 3 
shows the computed velocities for M = 44.9, for which the above structure is evident. 

We turn next to the instability features of the vortex motion. 

4. Type I1 ‘sinuous’ inertial instability 
We note from $3 that the Type I1 vortex solution for M + m  mainly has the 

character of a ring jet of diameter 2y,, with its jet velocity profile given by the 
familiar sech2 behaviour of the two-dimensional Bickley jet. In $2, the inertial 
instability problem was set. Note that if one inserts the Type I1 basic-flow solutions 
into (2.2), then with k of order unity the outer-flow eigenfunctions are trivial : see also 
below for other regimes. I n  the jet-like region, by contrast, where y = y,+t with 
6 = 0(1), these equations take the form 

$ = k ( F / z / 2 - c ) + n 3 / y i ,  
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where in most places yo has been written for yo+ t  as a consistent leading-order 
approximation. As a result, for large yo, the leading-order terms in an asymptotic 
expansion of the eigenfunctions, in inverse powers of yo, obey the equations 

(4.44 

(4.4b) 

$0 = k(C)/d2-c) ,  (4.4c) 

with the basic profile Fb given by (3.22). This is precisely the stability problem for 
the Bickley jet: see Drazin & Reid (1981, p. 233 ff). Hence we may conclude that, for 
k of O ( l ) ,  the sinuous and varicose two-dimensional instability modes of the Bickley 
jet appear as the dominant instability modes for the large-M Type I1 vortex under 
study here, as indeed might be expected physically. The swirl of the vortex and its 
motion inside and outside the ring-jet exert little influence. 

Briefly, for background, the Bickley jet is known to have two unstable inertial 
modes : a 'varicose ' and a 'sinuous ' mode. The varicose mode exists for all non-zero 
wavenumbers, k, below 42/2, and the sinuous mode for values of k less than 82/2. 
The imaginary part of c vanishes at those end-point values of k, with peak growth 
rates (kc,) occurring at k-values near 22/2 and 42/2 respectively. More details may 
be found in Drazin & Howard (1966) and Drazin & Reid (1981). 

On the other hand, (4.4) would not be expected to represent the proper large-M 
limit of (4.1)-(4.3) for all wavenumbers k, especially for small k where the three- 
dimensional effects from the swirl and the larger-scale motion of the vortex might be 
expected to reassert themselves. In  this section, therefore, we explore the 
modification of the sinuous Bickley mode for this vortex as the wavenumber k 
decreases. In  $5,  the process of modification is repeated for the varicose Bickley 
mode. For convenience the terms 'sinuous' and 'varicose' below refer to modes that 
are linked with the sinuous and varicose modes of the Bickley jet, in turn, when 

As k decreases, three major regimes of significant modification are found to emerge 
and these are investigated in turn in (a)-(c) below. Comments on them and 
comparisons are presented a t  the end of the section. 

k = O(1). 

(a) The $first three-dimensional regime : k = O(y;') 
The first new regime arises where k is decreased t o  the order of M-l,  i.e. O(y;l) from 
$3. At this stage, the axial wavelength rises to become of the same order of the vortex 
width, and so the helical nature of the instability mode becomes important, unlike 
in the two-dimensional Bickley-jet instability alone. The appropriate scalings k = 
ay;', c = yo' 8, and p = yo; P lead to the new leading-order outer form of (4.1)-(4.3) 
for the instability properties holding away from the ring jet, namely 

d(Yu) n2+azF 
dY - a6Y p ,  -- - i  ( 4 . 5 ~ )  

dP _ -  dY - iuiu, (4.5b) 
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with cr and the as-yet unknown c" of order one. The relevant perturbation solution 
here is ( 4 . 6 ~ )  

(4.6b) 

where I ,  and K ,  are modified Bessel functions of the first and second kind, B is a 
constant, while u is then given by (4.5b). These solutions holding outside the jet must 
be matched through the instability properties applying @side the jet. 

In the inner region, i.e. within the jet, we let 4 = yo$, and expand u and q5 in 
ipverse powers of yb as implied by the controlling equations. Then it is found that 
qb0 = a5Ft'/d2, q51 = -at. The appropriate instability equations in the jet are 
therefore 

du nY+ay0F"//1/2 n2+u2 
ui-i- - -- 

d6 Yo 4 Y o 4  p ,  

dp - i4 2nS 
U--P, - - -- 

d5 Yo Y o $  

in addition to some higher-order terms. Since uo = C,d0, it  follows that 

(4.7a) 

(4.76) 

C, a constant, completing the leading instability term. Next, the u1 equation, 
obtained from (4.7a), may then be integrated to give 

u1 = C,~,-uc"C,,  (4.9) 

with C, a constant. The pressure and velocities in this thin inner regjon must now be 
matched at  large 161 with the outer solutions (4.6) at Y = & 1.  Since $o + 0 for 161 +a, 
u, + 0, however, and hence the leading-order behaviour simply gives u - -ac"CJd. 
This implies that the outer perturbation velocity must be continuous across Y = 1. 
Using (4.6) and (4.5a), we have then the result that the outer pressure gradient 
dP/dY must be continuous across Y = 1, giving the requirement that 

T,(a) = BK,(a). (4.10a) 

On the other hand, (4.8) shows that there is a small jump, denoted by [ 3, in the 
pressure itself across the inner region, of the form, 

Further, for 6 + - 00, u - -GI ac"/yt, and so this pressure-jump condition may be 
rewritten as 

(4.10b) 

Substitution of (4.6) into (4.10b), and utilizing (4.10a), therefore leads to the required 
formula for the scaled complex wave speed (and hence the growth rate) 

(4.11) 

As a check in the present regime, the result (4.11) for t2 behaves like - a / 1 2 2 / 2  at 
large a, i.e. the wave speed c" is purely imaginary then, to the first approximation, 
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thus yielding instability, in agreement with the small-k result in Drazin & Reid 
(1981) for the sinuous Bickley mode. Thus, the result (4.11) matches as required with 
the earlier two-dimensional solution. 

The result (4.11) represents the main modification that occurs during this regime, 
due to  the vortex effect. Even though the three-dimensional character of the 
disturbances is now evident, however, the presence of the angular velocity is not yet 
significant to the instability mode, a feature which leads to the subsequent stage. 

( b )  The second three-dimensional regime: k = O(y$) 

As k continues to drop, the analysis in the previous section eventually breaks down 
because the azimuthal convection of the velocity perturbations due to  the relatively 
small swirling motion in the vortex becomes as important as the axial convection. It 
happens that this occurs when k = O(y,i), as may be verified from an order-of- 
magnitude argument. So in this new regime we put k = yo' p with P of order unity, 
and it is appropriate to  set c = y;i e" as before, since from (4.11) i t  is evident that 2 
remains O( 1) as a -+ 0. The outer solutions away from the ring jet for the instability 
problem in this case are simpler now than in the previous regime, viz. 

and 

( 4 . 1 2 ~ )  

(4.12b) 

These in effect replace the solutions (4.6a, b )  in the previous range. We observe that 
along with the solutions in ( 4 . 1 2 ~ )  the basic swirl is G = 0 for Y < 1 and G = 1 for 
Y > 1, from $3. 

The substantial difference from the previous stage now arises in the inner region. 
An expansion of u in inverse powers of yi is appropriate as before, since the scalings 
still hold, and so 

say. That yields the balance 
u = y ~ u o + u 1 +  ..., 

for the leading-order perturbation, where i0 = P F ' / l / Z .  This leads to uo = C ,  J0 as 
before, but the u, equation is now far more complex because 6, = is non- 
trivial in the current regime, owing to the enhanced azimuthal convection 
(represented by the term $9). The u1 equation is found to be 

(4.13) 

which has the solution u1 = F ( t )  q50, where 

n ($-BE) sinh2 (E0)  + 2 -sinh (5,) cosh (5,)]. (4.14) 
P 

From (4.14), it  is clear that for matching purposes 

u - (n-pc")C,, E+co, 

u - -@?,, 5-f-00. 
(4.15) 
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In addition, the pressure equation (4.2) in this layer becomes 

417 

Hence the changes in the pressure across the inner ring-jet layer are related not only 
to the axial but also to the azimuthal momentum flux, another new feature in the 
current stage. Substituting for uo and integrating with respect to 6 ,  we find the 
pressure jump to be 

[PI = iclY,-l(l-J;md:dt) 

(4.16) 

In consequence, the matching of the velocities (4.15) with the outer solutions (4.12a) 
and the joining of the pressures by means of (4.16) gives the scaled complex wave 
speed for this unstable mode, namely, 

(4.17) 

This represents the main result of the present regime. It may be verified that (4.17) 
matches onto the earlier result (4.11), for /?+a and a+O respectively, as required. 
At the other extreme, as k continues to  decrease, the swirl velocity becomes 
dominant, and a final small-k regime is found to appear. This final regime is studied 
next. 

(c )  The three-dimensional regime: k = 0(yi2) 
Guided by the behaviour of regime ( b )  a t  small p we find that a third new stage 
emerges when k is reduced to the order of yo2. Let k = yo2 y ,  say. Then the function + of (4.3) is 0(y i2)  a t  most, say + = yo2 @, in the outer regions away from the ring jet. 
Next, supposing c remains 0(1), we see that (4.1) and (4.2) become 

(4.18a) 

(4.1%) 

respectively, in which @ is - yc in Y < 1, but n / P -  yc in Y > 1. In  either case, the 
pressure perturbation function p can be shown to obey the same Cauchy-Euler 
equation as previously, so that the power-law solutions in (4.12b) still apply here, 
while u is now given by 

u = iy, A 2 (4.19) 

By contrast, the solution for u in the inner ring-jet region is, as previously, u = 
C, g5. Further, unlike before, the pressure equation (from (4.2)) in this wavenumber 
range includes only the effects of swirl and not those of the axial motion, within the 
jet region, and is specifically 

dY 0 CP ’ 
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FIQURE 4. Imaginary part of the wave speed, c ,  us. wavenumber, k, for the Type I1 sinuous mode, 
M = 44.9. (a )  cI VUB. k. 0, n = 3 ;  A, n = -3. Solid line is for the Bickley jet. ( b )  cI us. k at small 
k. 0,  n = 3 ;  a, n = -3. The solid line represents the asymptotic results from $4. 

Thus, the pressure jump across the ring-jet layer follows as 

b] = iC, y;l. (4.20) 

Matching the inner perturbation-velocity solution u = C, 4 to the outer perturbation 
u-form obtained from (4.19), and utilizing the corresponding perturbation-pressure 
results (4.20) and (4.12b) therefore leads to the principal result 

yc = #n+i (+n2-;lnl); (4.21) 

for the complex wave speed e during the current regime. This matches at large y with 
the small-/3 version of (4.17) as required. 

So overall here we see that the sinuous modes in the present stage are characterized 
by an outer structure in which both the radial velocity and the pressure are 
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FIGURE 5. Real part of the wave speed, c, ws. wavenumber, k, for the Type I1 sinuous mode, M = 
44.9, showing detail at  small wavenumber. 0,  n = 3 ;  A, n = -3. The solid lines represent the 
asymptotic results from $4 for n = If: 3. 

discontinuous a t  Y = 1.  The Bickley-jet structure holding in the vicinity of the 
cylindrical surface Y = 1 smooths out the instability eigenfunctions in a fashion 
dependent on the relative sizes of the azimuthal and axial convection of the 
disturbances due to the basic vortex flow. In  particular, the pressure jump induced 
across the jet is determined by an integral of the following version of (4.2): 

(4.22) 

For the first regime (a) above, i.e. k = O(y;') and larger, the contribution I1 
dominates that of I, whereas for the second regime (b )  where k = O(y;?) both I and 
I1 matter; and for k = 0(yO2) in the third regme, (c), only the contribution I affects 
the pressure jump to leading order. 

For the sake of comparisons with our numerical results, a multiplicative composite 
expression for main results (4.11), (4.17), and (4.20) above is used, giving 

(4.23) 

as the predicted complex wave speed. Figure 4 shows the variation of cI predicted 
from (4.23) plotted vs. k for a flow-force valueM of 44.9 (corresponding to yo = 60.64); 
alongside is the result of a fully numerical computation of cI for this sinuous mode, 
without any large-M approximation. The details of the numerical procedure used 
here may be found in Duck & Foster (1980). Figure 5 shows cB as well, for the same 
case. The agreement is not particularly close quantitatively, but we recall that the 
terms of next order in the c-series are only O(y& smaller, and hence numerically are 
still substantial (about 13 YO) even a t  a yo of 60.64. Moreover, the diamond symbols 
in figure 4(b)  and figure 5 are the results of retaining three terms in the long-wave 
expansion for the Bickleyjet (Drazin & Howard 1966). They agree very well with the 
fully numerical work. In addition, the overall trends seem correct and there is good 
qualitative agreement between the asymptotic solutions presented in this section 
and the numerical results. 
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5. Type I1 'varicose' inertial instability 
As with the 'sinuous ' modes of the previous section, the properties of ' varicose ' 

instability modes a t  large flow force M divide into three distinct regimes (a)-(c) 
depending on the size of the wavenumber k, and these three unstable regimes, where 
k has the orders 1, yi1, yo2 respectively, are considered in turn below. 

(a )  The two-dimensional regime: yo1 4 k 4 1 

It was pointed out a t  the beginning of 94 that when k is O(l) ,  with the wave speed c 
and azimuthal wavenumber n also assumed to be 0(1) ,  the stability problem of 992, 
3 reduces to solving for the two-dimensional inviscid stability of the Bickley jet 
concentrated near the cylindrical face y = yo so that the Rayleigh equation, 

(W-c) ( Y - k 2  Ul) = W" Y, 

Y(0)  = Y(o0) = 0 

( 5 . 1 ~ )  

(5.1 b )  

holds then for the varicose modes, as well as for the sinuous modes of $4. Here 9 is 
the perturbation stream function and fl is 0(1) with 

y = yo+[, W = a, sech' (a,  ( E +  d2)) (5.1 c )  

where W is the basic axial-flow profile and a, = 2-i, a2 = 2-t. The Bickley-jet 
instability features are well established, e.g. see Drazin & Reid (1981) ; of note here 
are two such features. First, instability is present for k less than a cut-off value k = 
k, (see however $6 in the context of the vortex instability there). Secondly, for long 
waves, as k+O,  the wave speed c+a, from below, so that the waves travel a t  
virtually the maximum flow speed. Our concern is with the latter aspect, which 
involves a change in the structure of the varicose modes. 

For small k the varicose-mode solution in fact splits into three zones 1-111 as 
shown in figure 6, and 

c = a ,  ( l + k b l +  ...) (5.2) 

where the complex perturbation c1 is to be found. The solution then develops as 
follows in zones I1 and 111: 

(5.3a) 
in I1 (where g = O ( l ) ) ,  

Y =  ktYo+ ... (5.3b) 

in I11 (where E+ 4 2  = kit), with W(6) remaining O(1) in the former but W = a,- 
a, at kg + . . , , in the latter zone which is focused near the position of the peak jet 
velocity, in the middle of the ring jet. The major cause of all the scalings in (5.2), 
(5.3-a, b)  is the thickness of this innermost central zone 111, which acts to smooth out 
the discontinuities arising in the zone I1 just outside and whose extent is found to be 
O ( d )  from the orders of magnitude involved. Substituting into (5.1) we find the 
perturbation solutions 

Yo = a;lAo (W--a,), Yl = --aa;1Aoc1, (5.4-a, b) 

(5.4c) 

Y = Yo + kt Yl + k Y, + . . . 

Y, = - B, [fl* tanh2 [* - tanh E* -&coth 5*] 

and (5 .5)  
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hl 4 "  
where &'* = a, [, ( = a; [, El = at c,. The matching between the zones 11,111 then fixes 
the constants B,, B, in terms of A , :  

B, = - ~ A , , / x ,  B, = - 2 8 , ~ ~ .  (5.6a, b )  

The outer zone I, however, of extent O(k-l) in E,  has essentially potential flow, so that 
there @ is required to have the form exp(-k() rather than exp(k(), to avoid 
exponential growth. Hence the large-[ behaviour in zone 11, i.e. 

-Ao-  k%A, cJal - ICB, a, (+ . . . 
from (5.4), must be proportional to  1 - k(+ . . . predominantly, implying that 

a,B, = -Ao. ( 5 . 6 ~ )  

Combining (5.6a-c) therefore we obtain the main result, for the complex wave speed 
correction, as 

yielding cll > 0 and hence instability. This result agrees as required with the previous 
long-wave results of Drazin & Howard (1966) for two-dimensional jets. although here 
the emphasis is put more on the structural changes a t  small wavenumbers since 
these provide the basis for the next significant regime studied in ( b )  below. Zone I 
above, the outermost zone, is a region of negligible basic flow in effect, while zone I1 
merely induces a displacement effect a t  leading order, bringing in the precise details 
of the basic-flow profile, and I11 is a critical layer, in some senses, with the basic 
velocity a t  its maximum. The singularity arising in the zone I1 solution (5 .4~)  as 
(+- 4 2  is smoothed out by the thin zone 111, and @ is then odd in 6,. The structure 
above points to the following stage next. 

c1 = (n/4a2)%exp (52ni), (5.7) 
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( b )  The $rat three-dimensional regime : k = O(y0l) 
Here k is reduced to  O(y;l), say k = yola. The reason for this regime arising is that 
the outermost zone I above, of extent O(k-') expands right across the gap between 
the ring jet and the symmetry axis, producing a new three-dimensional influence. 
Again three different zones are present, labelled 1-111 by analogy with those in (a), 
although here we use the disturbance velocities and pressures in each zone to draw 
out more clearly the major physical balances present. These also require fewer terms 
in the expansions, incidentally. In  the current regime, as implied by the earlier 

(5.8) 
expansions, we have 

c = c 0 + y , ~ c 1 +  ..., 
where co is real, and turns out to  be equal to a,, whereas c1 is found subsequently to  
be complex. Zone I is then the largest one, where y = yo Y with Y of O(1) and the 
asymptotic expansions begin as 

(u,p) = (u*,p*)+ ..., (w,g) = (y,'W,G)+ ..., (5.9a, b)  

where the basic flow properties ( W ,  G )  are given by (3.16) and (3.19) and are functions 
of Y .  For simplicity, we now drop the *-notation. So there 6, = -yb1ac0 to leading 
order and the governing instability equations reduce to 

du u . (n2+a2y2)  
dY - -r- ac, y2 

1 P, _.- 

_ -  d~ - iacou. 
dY 

Thus the pressure perturbation satisfies the modified Bessel's equation 

d2P dP y2-+Y--((n2+a2y2)p = 0, 
dYI dY 

(5.9C) 

(5.94 

( 5 . 1 0 ~ )  

and the  appropriate boundary conditions become 

p bounded a t  Y = 0, 03, (5 .  lob) 

p continuous, -discontinuous, dP a t  Y = 1 .  ( 5 . 1 0 ~ )  

Here the two constraints in (5 .10~)  anticipate the properties holding inside the ring 
jet close to Y = 1 .  Those properties come from the zones 11, 111. 

dY 

In zone I1 we have y = yo + E and, again from the previous scalings, 

(%P) = ~ ~ o ~ P o ~ + Y , ~ ~ ~ l ~ P l ~ + Y , 1 ~ ~ * ~ P 2 ~ +  . * f ,  ( 5 . 1 1 ~ )  

(20,s) = (W,$ )+  .... (5.11 b) 

Here W and Y are written for the basic axial velocity and circulation in the 
ring jet, from (3.20) and (3.21), and we have written here, for brevity, the quantity 
$4'" for %'I42 and 5 is now of order unity. Then, the function # = y ; l a ( W - c , ) -  
y;; acl + yo2 nY + . . . . The successive solutions are found to be simply the dis- 
placement-induced forms 

uo = A o  (W-co), u1 = -Aoc,,  (5.12a, 6) 

po = const., p1 = const. (5.1 2 c) 



Stability of Long's vortex at large flow force 423 

along with expressions for u,, p ,  which need not concern us here. In  (5.12) A ,  is a 
constant and the result c, = a, is required to allow the varicose solution to be 
continuous through the critical level where W = co. Then the critical layer, zone 111, 
lying near the point of maximum axial speed, has y = yo - 4 2  + y$$, with $ of order 
unity, and the scales above imply that the expansions 

p = #, + consts. + y,"* + . . . (5.13a, b)  

w = a,-Ay;i$+ ..., Y = Y,+y;fY,$+... (5.13c, d )  

hold, where (9,,g1) are constants and qh - -a(hg2+c,) y;;, h = .,a:. So the main 
governing equation here turns out to be 

u = y;%2io + . . . , 

( 5 . 1 4 ~ )  

with 8, a constant. This yields the local solution 

where the match with zone I11 outside determines the constants appearing, in the 
form 

f i (n2+a2)IjO/(4a(Ac;)~)+B0 = -A: .  (5.15) 

The superscripts f refer to evaluation in zone I1 for 6 2 0 respectively : see figure 6. 
The above properties in the thinner zones IIk, I11 therefore lead to the jump 

conditions on the external pressure and its gradients, viz. the perturbation velocity 
u in zones I' as Y + 1 in turn, namely 

p f  = p -  = $ o  a t  Y =  1,  

u* = -a,A$ a t  Y = 1. 

(5.16a, b)  

(5.16c, d )  

Consequently the split solution 

P- = UIn (aY), P+ = cJ& (aY)I ,  ( a ) / K ,  (a) (5.17a, 6 )  

holds, from (5.10). So (5.15) then yields the required eigenrelation fixing the main 
complex wave-speed term c1 as 

a, exp ($xi), (5.18) 

since, from (5.94, u* = (dp*/dY)/iac, in the outer zones I*. 
As a check, for large a in (5.18), K,/K,+-1, In/In+l and in consequence 

c1 - (Inln/4a2);exp (!xi) for any finite n, joining with the previous two-dimensional 
regime ( a )  (see (5.7)), as required. For small a on the other hand, which is the other 
extreme of most interest, K ,  (a) - dnl, I ,  (a) - alnl for finite a and any In1 =I= 0, so 
that then c1 levels out at the O(1)-value, 

c, - (nx/4a2)gexp (;xi) as a + 0. (5.19) 

This result guides the subsequent analysis in regime (c), for smaller a-values, such as 
extra regime being expected anyway since the swirl velocity has played no significant 
part so far, e.g. in the derivation of (5.18). The nature of zones I and I1 suggests that 
the swirl enters the reckoning when k drops to O(y;'), which indeed defines the new 
stage (c) below where k is reduced to the order of yi2. Meanwhile, we note that for 
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the current unstable three-dimensional regime the widest zone, 1, has effectively no 
basic flow and so the disturbances have potential-flow properties, but now in three 
dimensions, while zone 11 covering most of the ring jet is altered little from its form 
in the earlier stage ( a ) ,  with the swirl, the cross-stream pressure gradient and 
three-dimensionality have only higher-order influences. The thinnest zone I11 suffers 
three-dimensional effects, however, through the term n* in (5.14). All the three zones 
involved interact strongly. Again, as for the sinuous case, the term 'varicose ' loses 
some physical meaning here since for instance the pressure gradient is no longer odd 
about 6 = 0, although as remarked earlier the present unstable modes stem from 
continuation of the earlier unstable varicose two-dimensional branch. 

( c )  The second three-dimensional regime : k = O(y;') 

Here, as anticipated, k = y i2P  is of order yo2, and consequently 

c = co+y;:cl+ ... (5.20) 

and the swirl comes strongly to the fore. As a result the critical layer I11 is found to 
move off-centre in the jet, with c,, 4 a, now. The scales involved throughout this 
regime again follow from the previous ones. 

The outermost zone I has Y = yo' y of O ( 1 )  again, but 

(u, p) = (u*, yo1 P*) + . . . 9 (5.21a) 

4 = yo2@, where @ = -pc,+nC/Y?, (5.2 1 b )  

where G is 1 in Y > 1 but zero in Y < 1 .  Therefore the controlling instability 
equations here are 

du* u* n2p* 
d Y  P@' 
- = -- y+i- ( 5 . 2 2 ~ )  

(5.223) 

for which the solutions are 

p*- = q- Ynl, 

p*+ = p+ (n/p-/jco) y-1'4, 

u*- = _ .  1q - InlYlnl-l/pc0, 

u*+ = - -  ip + [n[Y-lnl-l, 

(5.23a, 6 )  

( 5 . 2 3 ~  d )  

where the constants (q', q-) are unknown. The jump conditions a t  Y = 1 & required 
to fix the solution above emerge again from the solution features in the inner zones 
11, I11 covering the ring jet. 

I n  zone 11, = y-  yo is the relevant coordinate again and 

(u, P) = (UO, YO1 Po) + * * * i (5.24a) 

so that the swirl becomes important here also. The governing equations produced by 
the expansions here then provide the solutions 

u$ = ,@'A,+ [p( W - co) + nU], 

p$ = 17' + L4; 92/p 

( 5 . 2 5 ~ )  

(5.258) 
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FIGURE 7 .  Location of the critical layer 111 for the second three-dimensional varicose mode 

(35(c)) for Long’s vortex. 

on either side of the critical layer, with A $ ,  17’ being constants and the terms 
involving 3 representing new swirl-velocity effects, as anticipated. The critical layer 
I11 occurs where both uo and uk reach zero, which leads to the two equations 

p(W-c,)+nY = 0 a t  6 = Ec,  ( 5 . 2 6 ~ )  

/3W’+nY’=O at <=&, (5.266) 

for the unknown critical position f c  and wave speed co. In  general, f;, =+ 0 now and so 
the critical layer I11 is moved off-centre, compared with the two previous rhgimes, 
as shown in figure 7, this movement being inwards (outwards) for positive (negative) 
n. Inside this critical layer I11 we have y = yo + 5, + y;)B, implying the expressions 

( u , p )  = (y;~~o,y;l$o)+...  3 ( 5 . 2 7 ~ )  

w = wo+y;~gWl-yYo:g2~+.. .  , (5.27b) 

Y = ~ o + y ~ ~ g Y l - y ~ ~ ~ 2 Y z + . . . t  ( 5 . 2 7 ~ )  

where (Wo, “w;, W2) and (30,$91, 4) are constants, related by equations obtained 
from the relations (5.26), namely P(Wo-co)+n~o = 0, P^W; +nYl = 0. Thus 
$ - yo:@ say and we find that the solution here has 

(5.28) 

after some working, with @, = constant and with the term in angled brackets being 
analogous with that in (5.14b). Also here the term @ = -p(gz W2+cl) +n%2$z once 
more brings in the influence of the swirl of the basic vortex. 



426 M .  R. Foster and F .  T .  Smith 

The required matching of the velocities and pressures between the zones 11, 111 

/?-,A3 (-p“ly-,+nY2) = ~ n 2 ~ o ( P ” l y - , - n Y 2 ) ~ ~ x ( ( P c l ) ~ + ~ ~ o ,  (5.29a,b) 

then yields the two relations 

@, = 17++ip1A$Y;, (5.29c, d )  

where r is a constant. In  turn, the velocity and pressure match between the zones 
1, 11 provides the missing jump conditions for the powcr-law outer solutions (5.23): 

(n-Pc,)q+ = 17++ip1A:, q- = n-. (5.29934 

Hence, combining (5 .29~-h)  we obtain the main eigenrelation 

(5.30) 

which determines the complex wave-speed contribution c1 for given wavenumbers 

With the forms for W and Y given in $3, the relation (5.266) may be solved to 

tanh (&/2;+$) = n/(4pa1),  ( 5 . 3 1 ~ )  

p, n. 

determine the location of the critical point, given by 

with the wave speed co then determined from ( 5 . 2 6 ~ )  to be 

co = a, ( 1  + n / ( 4 p ~ , ) ) ~ .  (5.31b) 

From these properties we note that, since co is real and positive, modes with positive 
azimuthal wavenumber n are ‘prograde ’, i.e. those modes propagate around the 
vortex in the same direction as the swirl in the basic flow; any n < 0 modes are 
similarly labelled ‘retrograde’. Further, the structure remains intact only for p > pc, 
where the cutoff value is 

Pc = lnl/4a1. (5 .31~)  

As p+pc from above, the critical position 1&I+co, and so the critical layer 111 in 
effect begins to leave the ring-jet zone 11, moving toward the outermost regions I +  
for n 3 0, with the wave speed co - [n+ Inl]/(2pC) a t  that stage. The square-root term 
(/3W2-nY2)i in (5.30) is real throughout the range p > p,, since “w;, = ijW (c,,), Y2 = 
$9’’ (&), giving p“W; - n 4  = a: pa, ( 1  - n2/4p2 a:)’, which is positive above p,. As a 
check, we note that for increasingly large /3 we have co retreating to the value u,, and 
(5.30) shows that then ct ir - In1 a;/4a2, merging with the previous three-dimensional 
regime ( b )  as required (see (5.19)). 

For further discussion, i t  is more convenient to write (5.30) explicitly in terms of 
n and p, 

= 2a2 (pa,); ( p c l ) z  ’( 1 + ~ n2 )i[l-ijInl(l.’(L+F)’)1. (5.32) 
16p2 a: 4 4Pul 

on use of (5.31). 



Stability of Long’s vortex at large $ow force 

0.06 

0.05 

0 . 
a -  

427 

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 

FIGURE 8. Imaginary part of the wave speed, c, 718. wavenumber, k, for the Type I1 varicose mode, 
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k 

The principal aspects of this three-dimensional interactive regime (c) ,  then, are 
quite different for n > 0 and n < 0 modes. The n > 0 ones are prograde; the n < 0 
modes are retrograde. As P decreases toward PC, in addition, the prograde and 
retrograde modes diverge, c,, rising to  4a1 (n > 0) or falling to 0 (n < 0 ) ,  as noted 
already above. As p+K, the approximate behaviour of (5.32) is 

(5.33) 

so that cI vanishes to first and second order at p,, independent of the sign of n. 
It is evident from (5.32) that the terms in the second square bracket on the left side 

of (5.32) may vanish, and that turns out to be possible for n < 0 modes only ; hence 
Pc, --f 0 for P-+/3* as well, where P* is seen to be (+(-n);-&)/a, = (1 +2/( -n);))P,. 
If we write P*al = - (&) K ,  then near P* (5.32) takes the approximate form 

-m ( 1 - K 2 ) ( 1 - ~ n ( K + 1 ) 2 ) ( P - / 3 * ) a l  
(5.34) 

So c,+O as P + f i  for both n > 0 and n < 0 modes, and also c,+O as p+p* for the 
retrograde mode (n < 0) only. Figure 8 shows clI vs. k for the examples n = + 3 .  

(pcJg 4a, K$ (K2 + 114 ( - 1 - b ( K 2  + 1/K2 + 6)) * 

Computational comparisons are described in the following section. 

6. Further discussion 
We finish with a number of points concerning both the ‘sinuous’ and ‘varicose’ 
modes for this vortex. 

Regarding the varicose modes first, the upper cut-off beyond k, in regime (a) brings 
the swirl back into action again. That delays the cut-off to a value of k higher than 
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that for the Bickley jet, as described in the Appendix, while the lower cut-off(s) 
suggested during regime ( c )  have been discussed in the previous section. 

Computational studies for large finite values of M are described in 84 for the 
sinuous modes, where reasonable agreement with the current theory is found a t  least 
in a qualitative sense. The same numerical method was applied to  the varicose modes 
yielding the results and comparisons shown in figures 8 and 9. Here the agreement 
is less overall. For instance, the theory of $5 and the computations agree fairly well 
on the variation of cR with k for n = +3 ,  but not a t  all for cI for either n = 3 or 
n = - 3. Increasing the values of the effective flow force M used in the computation 
shows a trend not inconsistent with the theory, but it appears that the overall 
comparisons, certainly in quantitative terms, are hindered by the large relative 
corrections in the theory, the insufficiently large values of M and/or the outer edge 
y = yedge taken in the computations, and/or possible mode-jumping in the numerical 
work. 

As a check on the matter of the vortex-edge effects a t  a finite radius, the vortex 
edge in the computations was extended by 60%. This extension produced changes 
in cE and cI only in the third decimal place. Even more surprising, the eigenfunction 
itself showed virtually no change. The reason for this is that the edge boundary 
condition employed in the computations, as stated in Duck & Foster (1980), is 
p+icu = 0. That choice, originally recorded in Burggraf & Foster (1977a), 
fortunately picks out the required K ,  behaviour of the eigenfunction for large r ,  and 
suppresses the undesired I ,  behaviour. Additionally, the analyses of $54 and 5 may 
be repeated for an edge at a finite value of Y ,  say Yl; such analyses show no 
qualitative change in the long-wave results for the varicose mode. I n  particular, the 
zeros of cI at /3 = /3, and at p = /3* are still there a t  the same locations. Only the 
derivative of cI at these zeros is slightly altered. 

We move on therefore to  the mode-jumping aspect. Leibovich & Stewartson (1983) 
discuss a t  length the difficulty of obtaining near-neutral eigensolutions by numerical 
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means for the Batchelor vortex. Our difficulties here are virtually identical. Briefly, 
the numerical results are obtained by using a converged wave speed at a particular 
(small) k as a starting value, decrementing k by a small amount, and computing the 
wave speed a t  the new value of k. If that is done by beginning with what is essentially 
a Bickley sinuous mode a t  moderate k, we obtain the results shown in figures 4 and 
5.  However, for proceeding toward smaller and smaller values of k, a beginning made 
with a Bickley varicose mode a t  moderate k gives the results shown in figures 8 and 
9, which disagree with the theory. A detailed investigation of the eigenfunctions 
during this k-decreasing iteration shows that the eigenfunction changes character at 
longer wavelengths - the mode ceases to be obviously ‘varicose ’. It appears that  the 
numerical k-marching procedure goes onto a sinuous branch of the solution, rather 
than remaining ‘varicose’. Again, we note that the ‘sinuous’ and ‘varicose’ modes 
of $54 and 5 are in fact long-wave analytic continuations of sinuous and varicose 
Bickley modes, since those words become meaningless once the eigenfunction grows 
to include the regions outside the jet, per se. We remain convinced of the validity of 
the varicose-mode asymptotics in spite of the lack of numerical corroboration. 

We note here that, theoretically, the higher modes of the varicose family probably 
emerge from the infinitely many branches of the inverse-tangent function arising in 
the internal layer I11 of $ 5 ,  when applied to higher-order matching, although this 
does not seem to affect the comparisons above. In  addition, the existence of another 
family of varicose modes different from those of the present study cannot be 
discounted yet. 

Next, the contrast between the sinuous modes of $4 and the varicose ones of $5 is 
of interest. Although the structures and the strong interactions between the various 
zones are rather involved the separate physical features of the sinuous and the 
varicose modes are fairly clear for most axial wavenumbers k. The sinuous 
disturbances are driven by the pressure jump across the axial ring jet due to the 
coanda effect in the sinuous motion, whereas for the varicose disturbances the jump 
across the jet is in the pressure gradient as opposed to the pressure itself and, 
correspondingly, the critical layer embedded in the jet plays a vital role in ensuring 
that the jump properties hold. This distinction continues to hold until, in the 
varicose case, the regimes (b ) ,  (c)  are encountered at low k, bringing in three- 
dimensional and bwic-swirl centrifugal effects, in addition, which serve to gradually 
alter the jump conditions across the ring jet. A similar phenomenon occurs for the 
sinuous case a t  reduced wavenumbers and also a t  larger k-values. Further, the 
present alternative approach to the stability problem demonstrates that the 
interactive nature of the fully three-dimensional solutions is rich in interest, with 
emphasis on the delicate physical balances involved and the finding of unstable 
solutions for all positive and negative (and zero) azimuthal wavenumbers n, in 
contrast with many previous studies of swirling-flow stability. 

The same approach may well be useful in increasing the understanding of the Type 
I Long’s vortex stability and for other swirling flows such as the trailing vortex and 
rotating pipe flow. It is believed that certain viscous and non-parallel-flow effects, 
which could subsequently affect the longer waves a t  small k, can also be incorporated. 

The influence of nonlinearity would seem to be the most crucial area of further 
research, however, as emphasized in $ 1 ,  and here the flow structures laid out in $$4 
and 5 appear to  provide a good starting point. Nonlinear effects are likely to  come 
into force either through significant movement of the axial ring jet itself, akin to a 
vortex sheet, or through a nonlinear critical-layer process since a kind of linear 
critical layer acts in the case of the varicose modes of $5.  It remains to  be seen, from 
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the present and other theories, whether a closer connection with the real phenomenon 
of vortex breakdown can be established or not by inclusion of nonlinear effects. 
Again, another promising different view of the breakdown may emerge from steady- 
flow theory as in Burggraf & Foster’s (1977b) marching computations of the 
boundary-layer equations, which in some cases lead to a singularity within a finite 
distance. That may herald the onset of a large-scale separated eddy or vortex, with 
swirl, and this also remains to  be investigated. 

Another alternative, for tackling nonlinearity in rotating pipe flow, is to consider 
the consequences of added swirl in the Smith & Bodonyi (1982) finding of nonlinear 
neutral modes in Hagen-Poiseuille flow. 

The computations were performed on the IBM3081 of the Instruction and 
Research Computer Center of The Ohio State University and the CRAY XMPl of 
the NASA Lewis Research Center. The work herein was carried out in part under 
support for M. R. F. from SERC in the form of a Visiting Professor Fellowship in the 
summer of 1985, and also from NASA Lewis ICOMP, during the summer of 1987. 

Appendix 
Equations (2 .2)  may be combincd into a single secord-order equation which may 

be simplified somewhat (cf. Leibovich & Stewartson 1983) for our purposes here to 
represent the eigenfunction on the jet region of the vortex, 

d2u a b  
- = k2Ku, K = 1 +-+-, 
dE2 @ @ 2  

4 = k(W-c)+n9/yi. (A l e )  

As mentioned briefly in $6, the arguments leading to the upper cut-off, k,, for the 
Bickley jet (see Drazin & Reid 1981, for example) cannot bc applied here since the 
angular momentum of the vortex becomes important, just as at small k. Por the 
upper cut-off, it appears that the proper scalings are 

where k = yicc and a2 (5+ 4 2 )  = y;”22. Recall that W ( 0 )  = 0. Substituting these 
into (A l ) ,  along with similar Taylor series expansions for (a,  b),  leads to the following 
equation : “ “ [  = 16 a2+-- 1 

dE2 

where p = 128/2/2. Multiplying (A 2) by a, and integrating across the vortex leads 
to the solvability condition 

From which it is quite clear that solutions for clI > 0 may indeed exist. 



Stability of Long’s vortex at large pow force 43 1 

As k -+ k, (or, here, a -+ a,), cII -+ 0, and apparently also cIR -+ 0. In such a case, the 
equation for the neutral eigenfunction is 

dxZ 

WKBJ methods show that, for x+O, the two approximate solutions of (A3)  

are sin ( 4 p i / x ) ,  cos (4pi/x), 

one corresponding to a sinuous eigenfunction (the cosine), and one to the varicose 
mode (the sine). At large 1x1, clearly the decay is exponential, as exp ( +a, x). 

To explore solutions to (A 3), we write 

actx = ptexp (i(v+in)), 

(d2P/dv2) + [a - 2q cos (2v)l P = 0, 

(A 4) 

(A 5 )  

where a = ?f and q = -&pi. We note from (A 4) that at x = - co, w = -im fn; at 
x = 0, w = ico +in; and at I(: = CO, v = -ico +0+ ; so v is a complex variable. From 
Abramowitz & Stegun (1965), we consider a solution of (A 5 ) ,  

whose substitution into (A 3) gives the Mathieu equation for P = u/&, 

p1 = Ce,(iw) = Ce,(-$+ilog(a~x/p~)), (A 6) 
where the notation is for the Rth even periodic solution of (A 5 ) .  In general, such 
solutions of (A 5 )  exist for particular values of a,(q). Apart from certain multiplicative 
constants, Ce,(z) has the following asymptotic behaviour, 

where CT is arbitrary. Application of (A 7) for x+O under (A 6) shows that this 
solution behaves like cos (4pilx) near x = 0, meaning that this is clearly a sinuous 
eigenfunction. For 1x1 -fa, application of (A 7) shows that the behaviour is 

which does not decay for x+co, since u = dP. Now, Mulholland t Goldstein (1929) 
have found that (A 5 )  has solutions for pure imaginary q. In particular, they found 
that a, and a, (corresponding to Ce, and Ce,) have identical values at q = - 1.469 i. 
Thus, since the form of (A8) is r-independent, both Ce, and Ce, have identical 
asymptotic forms. Hence, the solution 

u = xi[Ce,( -;in +log (a! x/p’)) - Ce2( -$in + log (a! x/pt))l (A 9) 

will decay for 1x1 +co, and its eigenvalue q is - 1.469i. Hence, 

a, = 1.469/pi. (A 10) 

Therefore, k, = 1.469yi/(l28/42)i. For the case run here (M = 44.9), this computed 
k,-value is 72.91. 

So, the presence of swirl in the sinuous mode greatly extends the range of unstable 
wavenumbers over the Bickley-jet case. The above analysis does not appear to go 
through for the varicose case ; no comparable eigensolutions for pure imaginary q of 
the Go, variety (odd symmetry) are known to us in the literature. 
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